Statistical energy conservation principle for inhomogeneous turbulent dynamical systems.
نویسنده
چکیده
Understanding the complexity of anisotropic turbulent processes over a wide range of spatiotemporal scales in engineering shear turbulence as well as climate atmosphere ocean science is a grand challenge of contemporary science with important societal impact. In such inhomogeneous turbulent dynamical systems there is a large dimensional phase space with a large dimension of unstable directions where a large-scale ensemble mean and the turbulent fluctuations exchange energy and strongly influence each other. These complex features strongly impact practical prediction and uncertainty quantification. A systematic energy conservation principle is developed here in a Theorem that precisely accounts for the statistical energy exchange between the mean flow and the related turbulent fluctuations. This statistical energy is a sum of the energy in the mean and the trace of the covariance of the fluctuating turbulence. This result applies to general inhomogeneous turbulent dynamical systems including the above applications. The Theorem involves an assessment of statistical symmetries for the nonlinear interactions and a self-contained treatment is presented below. Corollary 1 and Corollary 2 illustrate the power of the method with general closed differential equalities for the statistical energy in time either exactly or with upper and lower bounds, provided that the negative symmetric dissipation matrix is diagonal in a suitable basis. Implications of the energy principle for low-order closure modeling and automatic estimates for the single point variance are discussed below.
منابع مشابه
Effective control of complex turbulent dynamical systems through statistical functionals.
Turbulent dynamical systems characterized by both a high-dimensional phase space and a large number of instabilities are ubiquitous among complex systems in science and engineering, including climate, material, and neural science. Control of these complex systems is a grand challenge, for example, in mitigating the effects of climate change or safe design of technology with fully developed shea...
متن کاملImproving Prediction Skill of Imperfect Turbulent Models Through Statistical Response and Information Theory
Turbulent dynamical systems with a large phase space and a high degree of instabilities are ubiquitous in climate science and engineering applications. Statistical uncertainty quantification (UQ) to the response to the change in forcing or uncertain initial data in such complex turbulent systems requires the use of imperfect models due to both the lack of physical understanding and the overwhel...
متن کاملSelf-Energy Closure for Inhomogeneous Turbulent Flows and Subgrid Modeling
A new statistical dynamical closure theory for general inhomogeneous turbulent flows and subgrid modeling is presented. This Self-Energy (SE) closure represents all eddy interactions through nonlinear dissipation or forcing ‘self-energy’ terms in the mean-field, covariance and response function equations. This makes the renormalization of the bare dissipation and forcing, and the subgrid modeli...
متن کاملStatistical Dynamical Closures and Subgrid Modeling for Inhomogeneous QG and 3D Turbulence
Statistical dynamical closures for inhomogeneous turbulence described by multi-field equations are derived based on renormalized perturbation theory. Generalizations of the computationally tractable quasi-diagonal direct interaction approximation for inhomogeneous barotropic turbulent flows over topography are developed. Statistical closures are also formulated for large eddy simulations includ...
متن کاملRegression Models with Memory for the Linear Response of Turbulent Dynamical Systems
Calculating the statistical linear response of turbulent dynamical systems to the change in external forcing is a problem of wide contemporary interest. Here the authors apply linear regression models with memory, AR(p) models, to approximate this statistical linear response by directly fitting the autocorrelations of the underlying turbulent dynamical system without further computational exper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 29 شماره
صفحات -
تاریخ انتشار 2015